invenio Documentation
Release 3.0.0

CERN

Jun 07, 2018

Contents

Quickstart 3
L1 PrerequiSites v v i e e i e e e e e e e e e e e e e e e e e e e 3
L2 OVEIVIEW o it i e e e e e e e e 3
1.3 Bootstrap e e e e 3
14 CuStomizZe v vttt e e e e e e e 4
L5 RUN . ..o 4
1.6 NEXUSIEPS . v v v v o o e 7
Tutorial: Develop a module 9
2.1 Scaffoldnewmodule e 9
2.2 Install, runand teSt L L L e e e e e e e e e 10
2.3 Form,viewsand templates L e e 12
24 Publishon GitHub 0 e e 16
2.5 Continue integration with TravisCI o 17
Invenio module layout 21
3.1 Descriptionofthefiles L e 21
3.2 Module naming CONVENtIONS v v v vt vttt e e e e e e e e e e e e e e 23
Application architecture 25
4.1 COre CONCEPLS .+ v v v v o e 25
4.2 Interfaces: WSGI, CLIand Celery o i i e et 26
4.3 Application assembly L L e e e e e e e e e e e e e e 27
4.4 Assembly phases e e e e e e e e e 27
4.5 Module diSCOVETY e e e e e e e e 28
4.6 WSGL ULand REST e e 28
4.7 TImplementation L. e e e e e e e e 28
Migrating to v3 29
5.1 Dumpingdatafrom vI.2 29
52 Loadingdatain v3 L e e 30
Login with ORCID 33
6.1 ORCID APIcredentials e e 33
6.2 Configuring Invenio L e e 34
History 37

7.1 From software to framework .

7.2 What happened to Invenio v2?
Releases

8.1 Version3.00
82 Version2x
83 Versionlx
84 VersionOx
Community

9.1 Gettinghelp
9.2 Communication channels . .
9.3 Contribution guide
94 Styleguide
9.5 Developer environment guide

9.6 Translation guide
9.7 Maintainer’s guide
98 Governance
9.9 Codeof Conduct
9.10 License

invenio Documentation, Release 3.0.0

Open Source framework for large-scale digital repositories.

Contents 1

https://travis-ci.org/inveniosoftware/invenio
https://coveralls.io/r/inveniosoftware/invenio

invenio Documentation, Release 3.0.0

2 Contents

CHAPTER 1

Quickstart

1.1 Prerequisites

To be able to develop and run Invenio you will need the following installed and configured on your system:
* Docker and Docker Compose
* NodelS v6.x and NPM v4.x

¢ Enough virtual memory for Elasticsearch.

1.2 Overview

Creating your own Invenio instance requires scaffolding two code repositories using Cookiecutter:
* one code repository for the main website.
* one code repository for the data model.

These code repositories will be where you customize and develop the features of your instance.

1.3 Bootstrap

First, let’s create a virtualenv using virtualenvwrapper in order to sandbox our Python environment for development:

’$ mkvirtualenv my-repository

Now, let’s scaffold the instance using the official cookiecutter template.

$ pip install cookiecutter
$ cookiecutter gh:inveniosoftware/cookiecutter—-invenio-instance -c v3.0
...fill in the fields...

https://docs.docker.com/install
https://docs.docker.com/compose/install/
https://nodejs.org/en/download/package-manager
https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html#docker-cli-run-prod-mode
https://cookiecutter.readthedocs.io/en/latest/installation.html
https://virtualenv.pypa.io/en/stable/installation/
https://virtualenvwrapper.readthedocs.io/en/latest/install.html
https://github.com/inveniosoftware/cookiecutter-invenio-instance

invenio Documentation, Release 3.0.0

Now that we have our instance’s source code ready we can proceed with the initial setup of the services and depen-
dencies of the project:

Fire up the database, Elasticsearch, Redis and RabbitMQ
$ docker-compose up -d
Creating network "myrepository_ default" with the default driver

Creating myrepository_cache_1 ... done
Creating myrepository_db_1 ... done
Creating myrepository_es_1 ... done
Creating myrepository_mqg 1 ... done

Install dependencies and generate static assets
$./scripts/bootstrap

Note: Make sure you have enough virtual memory for Elasticsearch in Docker:

Linux
$ sysctl -w vm.max_map_count=262144

macOS

$ screen ~/Library/Containers/com.docker.docker/Data/com.docker.driver.amd64-1linux/tty
<enter>

1inut00001:~# sysctl -w vm.max_map_count=262144

1.4 Customize

This instance doesn’t have a data model defined, and thus it doesn’t include any records you can search and display.
To scaffold a data model for the instance we will use the official data model cookiecutter template:

$ cd .. # switch back to the parent directory
$ cookiecutter gh:inveniosoftware/cookiecutter—-invenio-datamodel -c v3.0
...fill in the fields...

Let’s also install the data model in our virtualenv:

$ workon my-repository
$ cd my-datamodel
$ pip install -e

Now that we have a data model installed we can create database tables and Elasticsearch indices:

$ cd ../my-repository
$./scripts/bootstrap
$./scripts/setup

Currently, the system doesn’t have any users, but more important, it doesn’t have an administrator. Let’s create one:

$ my-repository users create admin@my-repository.com —-a —--password=<secret>
$ my-repository roles add admin@my-repository.com admin

1.5 Run

You can now run the necessary processes for the instance:

4 Chapter 1. Quickstart

https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html#docker-cli-run-prod-mode
https://github.com/inveniosoftware/cookiecutter-invenio-datamodel

invenio Documentation, Release 3.0.0

...1in a new terminal, start the celery worker
$ workon my-repository
$ celery worker —-A invenio_app.celery -1 INFO

..1n a new terminal, start the flask development server
workon my-repository

./scripts/server
Environment: development
Debug mode: on
Running on https://127.0.0.1:5000/ (Press CTRL+C to quit)
firefox https://127.0.0.1:5000/

Dy * ok X A Uy S

Note: Because we are using a self-signed SSL certificate to enable HTTPS, your web browser will probably display
a warning when you access the website. You can usually get around this by following the browser’s instructions in the
warning message. For CLI tools like curl tou can ignore the SSL verification via the -k /--insecure option.

1.5.1 Create a record

By default, the data model has a records REST API endpoint configured, which allows performing CRUD and search
operations over records. Let’s create a simple record via curl:

$ curl -k —--header "Content-Type: application/Jjson" \
——-request POST \
—-—-data '{"title":"Some title", "contributors": [{"name": "Doe, John"}]}' \
https://localhost:5000/api/records/?prettyprint=1

"created": "2018-05-23T13:28:19.426206+00:00",
"id": 1,
"links": {
"self": "https://localhost:5000/api/records/1"
}I
"metadata": {
"contributors": [
{
"name": "Doe, John"
}
:|I
"id": 1,
"title": "Some title"
}I
"revision": O,
"updated": "2018-05-23T13:28:19.426213+00:00"

1.5.2 Display a record

You can now visit the record’s page at https://localhost:5000/records/1, or fetch it via the REST API:

You can find this URL under the "links.self" key of the previous response
$ curl -k —-header "Content-Type: application/Jjson" \
https://localhost:5000/api/records/l?prettyprint=1

(continues on next page)

1.5. Run 5

https://localhost:5000/records/1

invenio Documentation, Release 3.0.0

(continued from previous page)

"created": "2018-05-23T13:28:19.426206+00:00",
"id": 1,
"links": {
"self": "https://localhost:5000/api/records/1"
}I
"metadata": {
"contributors": [
{
"name": "Doe, John"
}
]I
"id": 1,
"title": "Some title"
}I
"revision": O,
"updated": "2018-05-23T13:28:19.426213+00:00"

1.5.3 Search for records

The record you created before, besides being inserted into the database, is also indexed in Elasticsearch and available
for searching. You can search for it via the Search UI page at https://localhost:5000/search, or via the REST API:

$ curl -k —-header "Content-Type: application/json™ \
https://localhost:5000/api/records/?prettyprint=1

"aggregations™: {
"type": {
"buckets": [],
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0
}
}l
"hits": {
"hits": [
{
"created": "2018-05-23T13:28:19.426206+00:00",
"id": 1,
"links": {
"self": "https://localhost:5000/api/records/1"
}V
"metadata": {
"contributors": [
{
"name": "Doe, John"
}
JV
"id": 1,
"title": "Some title"
}V
"revision": O,
"updated": "2018-05-23T13:28:19.426213+00:00"

(continues on next page)

Chapter 1. Quickstart

https://localhost:5000/search

invenio Documentation, Release 3.0.0

(continued from previous page)

}
Iy

"total": 1
}’
"links": {
"self": "https://localhost:5000/api/records/?size=10&sort=mostrecent&page=1"

1.6 Next steps

Although we can run and interact with the instance, we’re not quite there yet in terms of having a proper Python
package that’s ready to be tested and deployed to a production environment.

You may have noticed that after running the cookiecutter command for the instance and the data model, there was
a note for checking out some of the TODOs. Uou can run the following command in each code repository directory to
see a summary of the TODOs again:

$ grep --color=always —--recursive —--context=3 —--line-number TODO

Let’s have a look at some of them one-by-one and explain what they are for:

1. Creating a requirements.txt: This file is used for pinning the Python dependencies of your instance to
specific versions in order to achieve reproducible builds when deploying your instance. You can generate this
file in the following fashion (note, this is only for the instance and not the data model):

$ cd my-repository/

$ pip install -e

$ pip install pip-tools
$ pip-compile

2. Python packages require a MANIFEST . in which specifies what files are part of the distributed package. You
can update the existing file by running the following commands:

$ git init

$ git add -A

$ pip install -e .[all]
$ check-manifest -u

3. Translations configuration (. tx/config): You might also want to generate the necessary files to allow local-
ization of the instance in different languages via the Transifex platform:

$ python setup.py extract_messages
$ python setup.py init_catalog -1 en
$ python setup.py compile_catalog

Ensure project has been created on Transifex under the my-repository organisation.

Install the transifex-client

$ pip install transifex-client

Push source (.pot) and translations (.po) to Transifex:

1.6. Next steps 7

https://www.transifex.com/

invenio Documentation, Release 3.0.0

’$ tx push -s -t

Pull translations for a single language from Transifex

’$ tx pull -1 en

1.6.1 Testing

In order to run tests for the instance, you can run:

Install testing dependencies

$ pip install -e . [tests]

$./run-tests.sh # will run all the tests...
...or to run individual tests

$ py.test tests/ui/test_views.py::test_ping

1.6.2 Documentation

In order to build and preview the instance’s documentation, you can run the following commands:

$ cd docs
$ make html
S firefox _build/html/index.html

8 Chapter 1. Quickstart

CHAPTER 2

Tutorial: Develop a module

2.1 Scaffold new module

The easiest way to create a new Invenio module is to use our provided cookiecutter template to scaffold the new
module.

First, you need to install Cookiecutter, which is available on PyPI (the —U option will upgrade it if it is already
installed):

’s pip install -U cookiecutter

Now we will create the files for the module. A module is basically a folder gathering all the files needed for its
installation and execution. So, go where you want the directory to be created, and run the command:

’$ cookiecutter https://github.com/inveniosoftware/cookiecutter—-invenio-module.git

This will first clone the template from git to your current directory. Then, Cookiecutter will ask you questions about
the module you want to create:

project_name [Invenio-FunGenerator]: Invenio-Unicorn
project_shortname [invenio-unicorn]:

package_name [invenio_unicorn]:

github_repo [inveniosoftware/invenio-unicorn]:
description [Invenio module that adds more fun to the platform.]:
author_name [CERN]: Nice Unicorn

author_email [info@inveniosoftware.org]: nice@unicorn.com
year [2017]:

copyright_holder [Nice Unicorn]:
copyright_by_intergovernmental [True]: False

superproject [Invenio]:

transifex_project [invenio-unicorn]:

extension_class [InvenioUnicorn]:

config prefix [UNICORN]:

invenio Documentation, Release 3.0.0

A folder invenio—unicorn has been created, you can go inside and have a look at all the generated files. Don’t be
scared about the number of files - a lot of the files are standard files that follow best practices for any Python package.

If you want further information about the created files, you can read the Invenio module layout section.

2.2 Install, run and test

In this section, we are going to see how to install the module we just scaffolded, run the tests, run the example
application and build the documentation.

Before that, we need to stop any running Invenio instance.

2.2.1 Install the module

Install the module is very easy, you just need to go to the root directory of the module and run the command:

pip install -e .[all]

Some explanations about the command:

* the —e option is used for development. It means that if you change the files in the module, you won’t have to
reinstall it to see the changes. In a production environment, this option shouldn’t be used.

e the . is in fact the path to your module. As we are in the root folder of the module, we can just say here, which
is what the dot means.

e the [all] after the dot means we want to install all dependencies, which is common when developing. De-
pending on your use of the module, you can install only parts of it:

the default (nothing after the dots) installs the minimum to make the module run.
— [tests] installs the requirements to test the module.

— [docs] installs the requirements to build the documentation.

some modules have extra options.

You can chain them: [tests, docs].

2.2.2 Run the tests

In order to run the tests, you need to have a valid git repository. The following step needs to be run only once. Go in
the root folder of the module:

git init
git add -A
check-manifest -u

What we have done:
* change the folder into a git repository, so it can record the changes made to the files.
* add all the files to this repository.

* update the file MANIFEST. in (this file controls which files are included in your Python package when it is
created and installed).

Now, we are able to run the tests:

10 Chapter 2. Tutorial: Develop a module

invenio Documentation, Release 3.0.0

./run-tests.sh

Everything should pass as we didn’t change any files yet.

2.2.3 Run the example application

The example application is a small app that presents the features of your module. The example application is useful
during e.g. development to have a minimal application to test your module with. By default, it simply prints a welcome
page. To try it, go into the examples folder and run:

$./app-setup.sh

$./app-fixtures.sh

$ export FLASK_APP=app.py FLASK_DEBUG=1
$ flask run

You can now open a browser a go to the URL http://localhost:5000/ you should be able to see a welcome page.

To clean the server, run the . /app-teardown. sh script after killing the server.

2.2.4 Build the documentation

The documentation can be built with the run-tests. sh script, but you need the fests requirements, and run the
tests. If you just want to build the documentation, you will only need the docs requirements (see the install section
above) and run:

$ python setup.py build_sphinx

2.2.5 Publishing on GitHub

Before going further in the tutorial, we can publish your repository to GitHub. This allows to integrate e.g. TravisCI
continue integration system and have easy publishing of your module to PyPI afterwards.

First, create an empty repository in your GitHub account. Be sure to not generate any .gitignore or README files, as
our code already has them. If you don’t have a GitHub account, you can skip this step, it is only necessary if you plan
to publish your module on PyPI.

Now, go into the root directory of your module, and run

git remote add origin URL-OF-YOUR-GITHUB-REPO

Now, we can commit and push the generated files:

git commit -am "Initial module structure"
git push --set-upstream origin master

Finally, we create a new branch to develop on it

git checkout -b dev

2.2. Install, run and test 11

http://localhost:5000/

invenio Documentation, Release 3.0.0

2.3 Form, views and templates

The goal of this tutorial is to add data to Invenio v3. We’ll create a form that inserts the data in the database. Also we

will touch different part of the development process such as:
* How to create a new view
* How to create a form
* How to add a utility function
* How to add new templates

* How to use Jinja2

2.3.1 Flask extensions

It is important to understand that Invenio modules are just regular Flask extensions. The Flask documentation contains
extensive documentation on the APIs, design patterns and in general how to develop with Flask, and it is highly

recommended that you follow Flask tutorials to understand the basics of Flask.

2.3.2 1. Create the form

First, let’s create a module that contains the forms of our project, we will use Flask-WTF.

in invenio_unicorn/forms.py

"""Forms module. """

from _ future_ import absolute_import, print_function

from flask wtf import FlaskForm
from wtforms import StringField, TextAreaField, validators

class RecordForm(FlaskForm) :

mwn

"""Custom record form.

title = StringField(
'Title', [validators.DataRequired()]
)
description = TextAreaField(
'Description', [validators.DataRequired()]
)

2.3.3 2. Create the views

in invenio_unicorn/views.py we’ll create the endpoints for
* create: Form template
* success: Success template

The views.py registers all the views of our application

12 Chapter 2. Tutorial

: Develop a module

http://flask.pocoo.org/docs/1.0/extensiondev/#extension-dev

invenio Documentation, Release 3.0.0

"""ITnvenio module that adds more fun to the platform."""
from _ future import absolute_import, print_function

from flask import Blueprint, redirect, render_template, request, url_for
from flask babelex import gettext as _

from invenio_records import Record

from invenio_records.models import RecordMetadata

from .forms import RecordForm
from .utils import create_record

blueprint = Blueprint (
'invenio_unicorn',
__name__,
template_folder="templates',
static_folder='static',

@blueprint.route ("/")
def index():
"""Basic view.
return render_template (
"invenio_unicorn/index.html",
module_name=_ ('Invenio-Unicorn'))

mon

@blueprint.route('/create', methods=['GET', 'POST'])
def create():
"""The create view."""
form = RecordForm/()
1if the form is valid
if form.validate_on_submit () :
create the record
create_record
dict (
title=form.title.data,
description=form.description.data

)
redirect to the success page
return redirect (url_for ('invenio unicorn.success'))

records = _get_all()
return render_template('invenio_unicorn/create.html', form=form, records=records)

def _get_all():
"""Return all records."""
return [Record(obj.json, model=o0bj) for obj in RecordMetadata.query.all()]

@blueprint.route ("/success")
def success():
"""The success view."""
return render_template ('invenio_unicorn/success.html')

2.3. Form, views and templates 13

invenio Documentation, Release 3.0.0

2.3.4 3. Create the templates

And now, let’s create the templates

in invenio_unicorn/templates/invenio_unicorn/create.html we override two blocks from the
invenio BASE_TEMPLATE and those are:

* javascript
* page_body

In the javascript block we will right a small fetcher, to get the created records from the API, and in the
page_body we will add the form and the placeholder for the records list.

{%— extends config.BASE_TEMPLATE %}

{% macro errors (field) %}
{%$ if field.errors %}

<ul class=errors>
{% for error in field.errors %}
<1li>{{ error }}</1i>
{% endfor %}

{% endif %}

{% endmacro %}

{% block page_body %}
<div class="container">
<div class="row">
<div class="col-md-12">
<div class="alert alert-warning">
Heads up! This example is for demo proposes only

</div>
<h2>Create record</h2>
</div>
<div class="col-md-offset-3 col-md-6 well">
<form action="{{ url_for('invenio_unicorn.create') }}" method="POST">

<div class="form-group {{ 'has-error' if form.title.errors }}">
<label for="title">{{ form.title.label }}</label>

{{ form.title(class_="form-control") |safe }}
{{ errors(form.title) }}
</div>

<div class="form-group {{ 'has-error' if form.description.errors }}">
<label for="description">{{ form.description.label }}</label>

{{ form.description(class_="form-control") |safe }}
{{ errors(form.description) }}
</div>

{{ form.csrf_token }}
<button type="submit" class="btn btn-default">Submit</button>
</form>
</div>
</div>
<hr />
<div class="row">
<div class="col-md-12">
{%$ 1f records %}
<h2>Records created</h2>

(continues on next page)

14 Chapter 2. Tutorial: Develop a module

invenio Documentation, Release 3.0.0

(continued from previous page)

<ol id="custom-records">
{% for record in records %}
{{record.title}}</1i>
{% endfor %}

{% endif %}
</div>
</div>
</div>

{% endblock page_body %}

in invenio_unicorn/templates/invenio_unicorn/success.html

{%- extends config.BASE_TEMPLATE %}

{% block page_body %}
<div class="container">
<div class="row">
<div class="col-md-12">
<div class="alert alert-success">
Success!
</div>

—Create more
<hr />
<center>
<iframe src="//giphy.com/embed/WZmgVLMt 7mp44" width="480" height="480"
—frameBorder="0" class="giphy-embed" allowFullScreen></iframe><p><a href="http://
—giphy.com/gifs/kawaii-colorful-unicorn-WZmgVLMt 7mp44">via GIPHY</p>
</center>
</div>
</div>
</div>
{% endblock page_body %}

2.3.5 4. Create the record creation function

in invenio_unicorn/utils.py

On the utils.py module will create a helper function that creates a record.

"mrytils module. """

from _ future_ import absolute_import, print_function
import uuid

from flask import current_app

from invenio_db import db

from invenio_indexer.api import RecordIndexer

from invenio_pidstore import current_pidstore
from invenio_records.api import Record

(continues on next page)

2.3. Form, views and templates 15

invenio Documentation, Release 3.0.0

(continued from previous page)

def create_record(data) :
"""Create a record.

:param dict data: The record data.

indexer = RecordIndexer ()

create uuid

rec_uuid = uuid.uuid4 ()

add the schema

host = current_app.config.get ('JSONSCHEMAS HOST'")

data["$schema"] = \
current_app.extensions|['invenio-jsonschemas'] .path_to_url(
'custom_record/custom-record-vl1.0.0.Jjson"')

create PID

current_pidstore.minters|['custid'] (

rec_uuid, data, pid_value='custom_pid_{}'.format (rec_uuid)

)

create record

created_record = Record.create(data, id_=rec_uuid)

db.session.commit ()

index the record
indexer.index (created_record)

Demo time

Let’s start our server again.

vagrant> invenio run -h 0.0.0.0

Then go to http://192.168.50.10/create and you will see the form we just created. There are two fields

Title and Description.

Let’s try the form, add something to the Tit le and click submit, you will see the validation errors on the form, fill in

the Description and click submit. The form is now valid and it navigates you to the /success page.

2.4 Publish on GitHub

Now that we finished the development, we want to push the changes to GitHub.

2.4.1 Commit the code

To do so, we will first list our changes and add them to our local git repository:

git status

shows all the files that have been modified
git add

adds all the modifications

H W H*= W0

Let’s test our changes before we publish them. See Run the tests for more information.

16 Chapter 2. Tutorial: Develop a module

invenio Documentation, Release 3.0.0

$./run-tests.sh

If it complains about the manifest, it is because we added new files, but we didn’t register them into the MANIFEST.
in file, so let’s do so:

$ check-manifest -u

2.4.2 Push the code

Once all the tests are passing, we can push our code. As we were developing on a branch created locally, we need to
push the branch on GitHub:

$ git commit —-am "New form, views and templates"
$ git push —--set-upstream origin dev

2.5 Continue integration with TravisCI

This section will show you how to enable continue integration using the TravisCI service. Note, that you code must
have been published on GitHub in order for this to work.

TravisCI allows to run the tests of your module in a test matrix with different Python versions, and different versions
of dependent Python packages. This ensures that your module becomes more robust.

2.5.1 Configure travis-ci.org

1. Create an account

We need first to create an account on travis-ci.org.

Travis Cl s saus

Test and Deploy with Confidence

Easily sync your GitHub projects with Travis Cl and you’ll be testing your code in minutes!

P,

Add your github credentials to signup

2.5. Continue integration with TravisCI 17

http://travis-ci.org

invenio Documentation, Release 3.0.0

Sign into GitHub
to continue to Travis Cl

Username or email address

|

Password

Forgot password?

New to GitHub? Create an account.

2. Enable travis for your repo

Go to your account

Travis Cl ;ﬂ: Blog Status Help

CERNDocumentServer / cds

Current Branches Build History Pull Requests

+/ Pull Request #599 records: data model update

* Reguires latest "cds-dojson’ schemas.

L7 Commitba26175
L) #599: records: data model update
&7 Branch cdslabs_ga

@ orestis Melkonian authored and committed

Click to enable the repo you have created

Harris Tzovanakis .

Accounts

(®) Sign Out

More options

19 #1860 passed (Restart build

“ Ran for 21 min 38 sec

() Total time 40 min 4 sec

i1 17 minutes ago

18

Chapter 2. Tutorial: Develop a module

invenio Documentation, Release 3.0.0

=2 drjova/invenio-unicorn
©1 drjova/invenio-vagrant
& drjova/inveniosoftware.org

@ drjova/ios_guides

Done!

2.5.2 Create a Pull Request (PR)

We want that our changes get merged into the main branch (master) of the repository. So, let’s go to the GitHub
repository. From here, you can click on the branch button.

Ll remileduc / invenio-unicorn @Watch 1 dsStar 0 YFork ©
¢> Code Issues 0 Pull requests 0 Projects 0 Pulse Graphs

No description, website, or topics provided.

D 1 commit ¥ 2 branches 7> O releases 11 1 contributor 4= GPL-2.0

Branch: master New pull request Find file Clone or download ~
remileduc first commit Latest commit 6694716 3 minutes ago
|t first commit 3 minutes ago
| docs first commit 3 minutes ago
| examples first commit 3 minutes ago
I invenio_unicorn first commit 3 minutes ago

Then, click on New pull request

L remileduc / invenio-unicorn @ Unwatch~ | 1 #sStar 0 YFork 0

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Pulse Graphs Settings

Overview Yours Active Stale All branches

Default branch

master Updated 6 minutes ago by remileduc Change default branch

11 New pull request 1]

Now, you can check the differences that you will add to the main branch. Fill a description and create the pull request.

Your branches

dev Updated 3 minutes ago by remileduc |

If TravisCI was correctly enabled, the pull request will now display a status check, that TravisCI is running the tests.
If the tests pass, the status check will become green, if the tests fails it will become red. This way you’re always sure
not to integrated code that breaks your tests.

2.5. Continue integration with TravisClI 19

invenio Documentation, Release 3.0.0

20

Chapter 2. Tutorial: Develop a module

CHAPTER 3

Invenio module layout

This page summarizes the standard structure and naming conventions of a module in Invenio v3.0. It serves as a
reference point when developing a new module or enhancing an existing one.

A simple module may have the following folder structure:

invenio-foo/

docs/

examples/

invenio_foo/
templates/invenio_foo/
__init___.py
config.py
ext.py
version.py
views.py

tests/

*.rst

run-tests.sh

setup.py

These files are described in the sections below.

3.1 Description of the files

3.1.1 *.rst files

All these files are used by people that wants to know more about your module (mainly developers).

* README. rst is used to describe your module. You can see the short description written in the Cookiecutter
here. You should update it with more details.

e AUTHORS. rst should list all contributors to this module.

21

invenio Documentation, Release 3.0.0

* CHANGES.rst should be updated at every release and store the list of versions with the list of changes
(changelog).

* CONTRIBUTING. rst presents the rules to contribute to your module.

e INSTALL. rst describes how to install your module.

3.1.2 setup.py
First, there is the setup. py file, one of the most important: this file is executed when you install your module with
pip. If you open it, you can see different parts.
On the top, the list of the requirements:
* for normal use
* for development
* for tests

Depending on your needs, you can install only part of the requirements, or everything (pip install
invenio-foo[alll]).

Then, in the setup () function, you have the description of your module with the values entered in the Cookiecutter.
At the end, you can find the entrypoints section. For the moment, there is only the registration in the Invenio
application, and the translations.

3.1.3 MANIFEST.in

This file lists all the interested files in the sub-folders. This file should be updated before the first commit. See the
Install, run and test section.

3.1.4 run-tests.sh

This is used to run a list of tests locally, to be sure that your module works as you wish. It will generate the documen-
tation, run pyfest and do other checks.

3.1.5 docs folder

This folder contains the settings to generate documentation for your module, along with files where you can write
the documentation. When you run the run—-tests. sh script, it will create the documentation in HTML files in a
sub-folder.

3.1.6 examples folder

Here you can find a small example of how to use your module. You can test it, follow the steps described in the Run
the example application section

3.1.7 tests folder

Here are described all the tests for your application, that will be run when you execute the run—tests. sh script. If
all these tests pass, you can safely commit your work.

See pytest-invenio for how to structure your tests.

22 Chapter 3. Invenio module layout

https://pytest-invenio.readthedocs.io/en/latest/

invenio Documentation, Release 3.0.0

3.1.8 invenio_foo folder

This folder has the name of your module, in lower case with the dash changed into an underscore. Here is the code of
your module. You can add any code files here, organized as you wish.

The files that already exist are kind of a standard, we are going through them in the following sections. The rule of
thumbs here is that if you need multiple files for one action (for instance, 2 views: one for the API and a standard
one), create a folder having the name of the file you want to split (here, a views folder with ui.py and api.py
inside).

config.py

All your config variables should be declared in this file. Thus, if we look for how to customize your module, we just
need to open this file.

ext.py

This is a specific file that you shouldn’t touch except if you want to have advanced features. It contains a class that
registers your module into the Invenio application, and load your default config variables from config.py.

version.py

Very basic file containing the version of your module.

views.py

Here you declare the views or end points you want to expose. By default, it creates a simple view on the root end point
that fills a template.

templates

All your Jinja templates should be stored in this folder. A Jinja template is an HTML file that can be modified thanks
to some parameters.

static

If your module needs JavaScript or CSS files, they should go in a folder called static. Also, if you want to group
them in bundles, you should add a bundles. py file next to the stat ic folder.

3.2 Module naming conventions

Invenio modules are standalone independent components that implement some functionality used by the rest of the
Invenio ecosystem. The modules provide API to other modules and use API of other modules.

A module is usually called:

1. with plural noun, meaning “database (of things)”, for example invenio-records, invenio-tags,
invenio-annotations,

2. with singular noun, meaning “worker (using things)”, for example invenio-checker, invenio-editor.

3.2. Module naming conventions 23

invenio Documentation, Release 3.0.0

A module may have split its user interface and REST API interface, for example invenio-records-ui and
invenio-records-rest, to clarify dependencies and offer easy customisation.

24 Chapter 3. Invenio module layout

CHAPTER 4

Application architecture

Invenio is at the core an application built on-top of the Flask web development framework, and fully understanding
Invenio’s architectual design requires you to understand core concepts from Flask which will briefly be covered here.

The Flask application is exposed via different application interfaces depending on if the application is running in a
webserver, CLI or job queue.

Invenio adds a powerful application factory on top of Flask, which takes care of dynamically assembling an Invenio
application from the many individual modules that makes up Invenio, and which also allow you to easily extend
Invenio with your own modules.

4.1 Core concepts

We will explain the core Flask concepts using simple Flask application:

from flask import Blueprint, Flask, request

Blueprint
bp = Blueprint ('bp', _ name_)

@bp.route('/")

def my_user_agent () :
Executing inside request context
return request.headers|['User—-Agent']

Extension
class MyExtension (object) :
def _ _init__ (self, app=None):
if app:
self.init_app (app)

def init_app(self, app):
app.config.setdefault ('"MYCONE', True)

(continues on next page)

25

invenio Documentation, Release 3.0.0

(continued from previous page)

Application

app = Flask(__name_)

ext = MyExtension (app)
app.register_blueprint (bp)

You can save above code in a file app . py and run the application:

$ pip install Flask
$ export FLASK APP=app.py flask run

Application and blueprint

Invenio is a large application built up of many smaller individual modules. The way Flask allows you to build
modular applications is via blueprints. In above example we have a small blueprint which just have one view
(my_user_agent), which returns the browser’s user agent sting.

This blueprint is registered on the Flask application. This allow you to possible reuse the blueprint in another Flask
application.

Flask extensions

Like blueprints allow you to modularise your Flask application’s views, then Flask extensions allow you to modularise
non-view specific initialization of your application (e.g. providing database connectivity).

Flask extensions are just objects like the one in the example below, which has init_app method.

Application and request context

Code in a Flask application can be executed in two “states”:

* Application context: when the application is e.g. being used via a CLI or running in a job queue (i.e. not
handling requests).

* Request context: when the application is handling a request from a user.

In above example e.g. the code inside the view my_user_agent is executed during a request, and thus you can have
access to the browser’s user agent string. On the other hand, if you tried to access request . headers outside the
view, the application would fail as no request is being processed.

The request object is a proxy object which points to the current request being processed. There is some magic
happening behind the scenes in order to make this thread safe.

4.2 Interfaces: WSGI, CLI and Celery

Overall the Flask application is running via three different applications interfaces:
* WSGI: The frontend webservers interfaces with Flask via Flask’s WSGI application.

e CLI: The command-line interface is made using Click and takes care of executing commands inside the Flask
application.

26 Chapter 4. Application architecture

invenio Documentation, Release 3.0.0

* Celery: The disitrbuted job queue is made using Celery and takes care of executing jobs inside the Flask
application.

4.3 Application assembly

In each of the above interfaces, a Flask application needs to be created. A common pattern for large Flask applications
is to move the application creation into a factory function, named an application factory.

Invenio provides a powerful application factory for Flask which is capable of dynamically assembling an application.
In order to illustrate the basics of what the Invenio application factory does, have a look at the following example:

from flask import Flask, Blueprint

Module 1

bpl = Blueprint (__name__, 'bpl")
@bpl.route('/")

def hello():

return 'Hello'

Module 2

bp2 = Blueprint (__name__, 'bpl")
@bp2.route('/")

def world():

return 'World'

Application factory

def create_app():
app = Flask(_ name_)
app.register_blueprint (bpl)
app.register_blueprint (bp2)
return app

The example illustrates two blueprints, which are statically registered on the Flask application blueprint inside the
application factory. It is essentially this part that the Invenio application factory takes care of for you. Invenio will
automatically discover all your installed Invenio modules and register them on your application.

4.4 Assembly phases

The Invenio application factory assembles your application in five phases:

1. Application creation: Besides creating the Flask application object, this phase will also ensure your instance
folder exists, as well as route Python warnings through the Flask application logger.

2. Configuration loading: In this phase your application will load your instance configuration. Your instance
configuration is essentially all the configuration variables where you don’t want to use the default values, e.g.
the database host configuration.

3. URL converter loading: In this phase, the application will load any of your URL converts. This phase is
usually only needed for some few specific cases.

4. Flask extensions loading: In this phase all the Invenio modules which provides Flask extensions will initialize
the extension. Usually the extensions will provide default configuration values they need, unless the user already
set them.

5. Blueprints loading: After all extensions have been loaded, the factory will end with registering all the blueprints
provided by the Invenio modules on the application.

4.3. Application assembly 27

invenio Documentation, Release 3.0.0

Understanding above application assembly phases, what they do, and how you can plug into them is essential for fully
mastering Invenio development.

Note: No loading order within a phase

It’s very important to know, that within each phase, there is no order in how the Invenio modules are loaded. Say, with
in the Flask extensions loading phase, there’s no way to specify that one extension has to be loaded before another
extension.

You only have the order of the phases to work, so e.g. Flask extensions are loaded before any blueprints are loaded.

4.5 Module discovery

In each of the application assembly phases, the Invneio factory automatically discover your installed Invenio modules.
The way this works, is via Python entry points. When you install the Python package for an Invenio module, the
package describes via entry points which Flask extensions, blueprints etc. that this module provides.

4.6 WSGI: Ul and REST

Each of the application interfaces (WSGI, CLI, Celery) may need slightly different Flask applications. The Invenio
application factory is in charge of assembling these applications, which is done through the five assembly phases.

The WSGI application is however also split up into two Flask applications:

 UI: Flask application responsible for processing all user facing views.

* REST: Flask application responsible for processing all REST API requests.
The reason to split the frontend part of Invenio into two separate applications is partly

* to be able to run the REST API in one domain (api.example.org) and the Ul app on another domain
(www.example.orq)

* because Ul and REST API applications usually have vastly different requirements.

As an example, a 404 Not found HTTP error, usually needs to render a template in the UI application, but return
a JSON response in the REST API application.

4.7 Implementation

The following Invenio modules are each responsible for implementing parts of above application architecture, and
it is highly advisable to dig deeper into these modules if you want a better understanding of the Invenio application
architecture:

* Invenio-Base: Implements the Invenio application factory.
¢ Invenio-Config: Implements the configuration loading phase.

¢ Invenio-App: Implements default applications for WSGI, CLI and Celery.

28 Chapter 4. Application architecture

https://invenio-base.readthedocs.io
https://invenio-config.readthedocs.io
https://invenio-app.readthedocs.io

CHAPTER B

Migrating to v3

Warning: Invenio v3 is significantly different from v1 and thus migrating from v1 to v3 is a complex operation.

This guide will help you dump records and files from your v1 installation. You will need to write code to import
the dumped data into your v3 installation. This is necessary because v3 support many different data models and
thus you need to map your vl MARC?21 records into your new data model in v3.

5.1 Dumping data from v1.2

The module Invenio-Migrator will help you dump your v1 data and as well import the data in v3.

5.1.1 Install Invenio-Migrator in v1

There are several ways of installing Invenio-Migrator in your Invenio v1.2 or v2.1 production environment, the one
we recommend is using Virtualenv to avoid any interference with the currently installed libraries:

sudo pip install virtualenv virtualenvwrapper
source /usr/local/bin/virtualenvwrapper.sh
mkvirtualenv migration —--system-site-packages
workon migration

pip install invenio-migrator --pre
inveniomigrator dump --help

v v r

It is important to use the option ——system-site-packages as Invenio-Migrator will use Invenio legacy python
APIs to perform the dump. The package virtualenvwrapper is not required but it is quite convenient.

29

http://invenio-migrator.readthedocs.io/en/latest/
https://virtualenv.pypa.io/en/stable/

invenio Documentation, Release 3.0.0

5.1.2 Dump records and files

$ mkdir /vagrant/dump
$ cd /vagrant/dump/
$ inveniomigrator dump records

This will generate one or more JSON files containing 1000 records each, with the following information:
* The record id.

* The record metadata, stored in the record key there is a list with one item for each of the revisions of the
record, and each item of the list contains the MARC21 representation of the record plus the optional JSON.

¢ The files linked with the record, like for the record metadata it is a list with all the revisions of the files.
» Optionally it also contains the collections the record belongs to.

For more information about how to dump records and files see the Usage section of the Invenio-Migrator documenta-
tion.

The file path inside the Invenio legacy installation will be included in the dump and used as file location for the new
Invenio v3 installation. If you are able to mount the file system following the same pattern in your Invenio v3 machines,
there shouldn’t be any problem, but if you can’t do it, then you need to copy over the files folder manually using your
favorite method, i.e.:

$ cd /opt/invenio/var/data
$ tar —-zcvf /vagrant/dump/files.tar.gz files

Pro-tip: Maybe you want to have different data models in your new installation depending on the nature of the record,
i.e. bibliographic records vs authority records. In this case one option is to dump them in different files using the
——query argument when dumping from your legacy installation:

$ inveniomigrator dump records —--query '-980__ a:AUTHORITY' —--file-prefix bib
$ inveniomigrator dump records —--query '980__ a:AUTHORITY' --file-prefix auth

5.1.3 Things

The dump command of the Invenio-Migrator works with, what we called, things. A thing is an entity you want to
dump from your Invenio legacy installation, e.g. in the previous example the thing was records.

The list of things Invenio-Migrator can dump by default is listed via entry-points in the setup.py, this not only
help us add new dump scripts easily, but also allows anyone to create their own dumpscripts from outside the Invenio-
Migrator.

You can read more about which things are already supported by the Invenio-Migrator documentation.

5.2 Loading data in v3

5.2.1 Install Invenio-Migrator in v3

Invenio-Migrator can be installed in any Invenio v3 environment using PyPI and the extra dependencies loader:

$ pip install invenio-migrator|[loader]

30 Chapter 5. Migrating to v3

http://invenio-migrator.readthedocs.io/en/latest/usage.html
http://invenio-migrator.readthedocs.io

invenio Documentation, Release 3.0.0

Depending on what you want to load you might need to have installed other packages, i.e. to load communities from
Invenio v2.1 you need invenio-communities installed.

This will add to your Invenio application a new set of commands under dumps:

’$ invenio dumps --help

5.2.2 Load records and files

’$ invenio dumps loadrecords /vagrant/dump/records_dump_0.json

This will generate one celery task to import each of the records inside the dump.

Pro-tip: By default Invenio-Migrator uses the bibliographic MARC21 standard to transform and load the records,
we now that this might not be the case to all Invenio v3 installation, i.e authority records. By changing
MIGRATOR_RECORDS_DUMP_CLS and MIGRATOR_RECORDS_DUMPLOADER_CLS you can customize the be-
havior of the loading command. There is a full chapter in the Invenio-Migrator documentation about customizing
loading if you want more information.

5.2.3 Loaders

Each of the entities that can be loaded by Invenio-Migrator have a companion command generally prefixed by load,
e.g. loadrecords.

The loaders are similar to the things we describe previously, but in this case, instead of entry-points, if you want to
extend the default list of loaders it can be done adding a new command to dumps, more information about the loaders
can be found in the Invenio-Migrator documentation and on how to add more commands in the click documentation.

5.2. Loading data in v3 31

http://invenio-migrator.readthedocs.io/en/latest/usage.html#customizing-loading
http://invenio-migrator.readthedocs.io/en/latest/usage.html#customizing-loading
http://invenio-migrator.readthedocs.io
http://click.pocoo.org/5/

invenio Documentation, Release 3.0.0

32

Chapter 5. Migrating to v3

CHAPTER O

Login with ORCID

ORCID provides a persistent identifiers for researchers and through integration in key research workflows such as
manuscript and grant submission, supports automated linkages between you and your professional activities ensuring
that your work is recognized.

This guide will show you how to enable your users to login with their ORCID account in Invenio. The underlying
authentication protocol is based on OAuth which is the same used for enabling other social logins (like login with
Twitter, Google, etc).

6.1 ORCID API credentials

In order to integrate your Invenio instance with ORCID the first step is to apply for a client id/secret to access the
ORCID Sandbox.

Please, follow the official ORCID documentation for this part.

After successful application for an API client application key you should receive in your inbox an email with your
Client IDandClient secret. You will need this information when configuring Invenio in the next step.

6.1.1 Redirect URI

After a user have authenticated on the ORCID site, the user will be redirected to a given page on the Invenio side.
ORCID requires you to provide a list of authorized URI prefixes that could be allowed for this redirection to happen.

Depending on the SERVER_NAME used to configure the Invenio installation, you should fill this parameter with:

https://<SERVER_NAME>/oauth/authorized/orcid/

33

http://orcid.org/
https://orcid.org/content/register-client-application-sandbox

invenio Documentation, Release 3.0.0

6.2 Configuring Invenio

In order to enable OAuth authentication for ORCID, just add these line to your var/instance/invenio.cfg
file.

from invenio_oauthclient.contrib import orcid

OAUTHCLIENT_REMOTE_APPS = dict (
orcid=orcid.REMOTE_SANDBOX_APP,

ORCID_APP_CREDENTIALS = dict (
consumer_key="<your-orcid-client—-id>",
consumer_secret="<your-orcid-client-secret>",

where the client id and client secret are those provided by ORCID in the previous step.

If you can now visit::

https://<SERVER_NAME>/login

you will be able to see ORCID authentication enabled:

34 Chapter 6. Login with ORCID

invenio Documentation, Release 3.0.0

INVENIO)

Log in to account

Sign in with ORCID

Email Address

Password a

New to Invenio? Sign Up

Forgot password?

6.2.1 Sign-up on first login

The first time a user try to login with ORCID, they will be required to provide a username and email address. This is
because ORCID does provide this information and it is required by Invenio in order to register an account.

6.2. Configuring Invenio 35

invenio Documentation, Release 3.0.0

36

Chapter 6. Login with ORCID

CHAPTER /

History

7.1 From software to framework

Invenio v3 is a completely new framework that has been rewritten from scratch. Why such a dramatic decision? To
understand why the rewrite was necessary we have to go back to when Invenio was called CDSWare, back to August
1st 2002 when the first version of Invenio was released.

In 2002:
* First iPod had just hit the market (Nov 2001).
* The Budapest Open Access Initiative had just been signed (Feb, 2002).
* JSON had just been discovered (2001).
e Python 2.1 had just been released (2001).
» Apache Lucene had just joined the Apache Jakarta project (but not yet an official top-level project).
* MySQL v4.0 beta was released and did not even have transactions yet.
* Hibernate ORM was released.
* The first DOI had just been assigned to a dataset.
Following products did not even exists:
* Apache Solr (2004)
* Google Maps (2005)
* Google Scholar (2004)
¢ Facebook (2007)
* Django (2005)

A lot has happen since 2002. Many problems that Invenio originally had to deal with now have open source off-the-
shelf solutions available. In particular two things happen:

37

invenio Documentation, Release 3.0.0

» Search become pervasive with the exponential growth of data collected and created on the internet every day,
and open source products to solve handles these needs like Elasticsearch became big business.

* Web frameworks for both front-end and back-end made it significant faster to develop web applications.

In addition to above technological changes, it also started to become more and more difficult to adapt Invenio v1
to all the different use cases we wanted to support. Preservation archives have vastly different requirements from
aggregators which have vastly different requirements from research data management systems. We further started to
see performance problems with larger and larger number of records.

Last but not least, we had many uses cases where it was no longer beneficial to store the records in MARC21, but
instead adopt either newer or custom data model.

All in all, new technologies, an aging product showing its cracks, slow development and a wish to have other data
models was key determining factors in deciding to start from scratch and implement a framework rather than a software
application.

7.2 What happened to Invenio v2?

Initial in 2011 we started out on creating a hybrid application which would allow us to progressively migrate features
as we had the time. In 2013 we launched Zenodo as the first site on the v2 development version which among other
things featured Jinja templates instead of the previous Python based templates.

In theory everything was sound, however over the following years it became very difficult to manage the inflow of
changes from larger and larger teams on the development side and operationally proved to be quite unstable compared
tovl.

Last but not least, Invenio v1 was built in a time where the primary need was publication repositories and v2 inherited
this legacy making it difficult to deal with very large research datasets.

Thus, in late 2015 we were being slowed so much down by our past legacy that we saw no other way that starting over
from scratch if we were to deal with the next 20 years of challenges.

38 Chapter 7. History

CHAPTER 8

Releases

Notes on getting involved, contributing, legal information and release notes are here for the interested.

8.1 Version 3.0.0

We are proud to announce the final release of Invenio v3.0.0. Invenio 3 has been completely rewritten from scratch
and have changed radically from previous Invenio versions. Invenio 3 is now framework, like a Swiss Army knife, of
battle-tested, safe and secure modules providing you will all the features you need to build and run a trusted digital
repository.

Invenio 3 is officially released today, however, Invenio 3 has already been battle-tested in large-scale production
systems for more than 1.5 years on sites such as:

e Zenodo
* CERN Open Data
* CDS Videos
Others sites are already in process of being built on Invenio 3:
e INSPIRE HEP - an aggregator for High-Energy Physics.

* WEKO3 - repository platform for 500+ Japanese universities.

8.1.1 What’s new
Invenio functionality is being released in bundles of modules. Invenio v3 contains the following bundles totaling more
than 27 individual Invenio modules:

» Base: the core application framework with e.g. distributed task queue support.

e Auth: accounts management, role-based access control, OAuth 2.0 client and provider, user profiles manage-
ment.

* Metadata: record and persistent identifier management including indexing, querying and OAI-PMH server.

39

https://www.zenodo.org
http://opendata.cern.ch
https://videos.cern.ch
https://qa.inspirehep.net

invenio Documentation, Release 3.0.0

The following bundles are being prepared for release in v3.1:

* Files: advanced file management with multi-backend support as well as IIIF Image API support.

« Statistics: COUNTER-compliant statistics.

See our roadmap for further details.

8.1.2 Getting started

In order to get started developing with Invenio v3 follow our Quickstart.
Next, head over https://invenio.readthedocs.io to understand how to develop with Invenio.

In addtion, each Invenio module also has extensive documentation:

Base bundle

invenio-admin
invenio-app
invenio-assets
invenio-base
invenio-celery
invenio-config
invenio-db
invenio-formatter
invenio-i18n
invenio-logging
invenio-mail
invenio-rest

invenio-theme

Auth bundle

invenio-access
invenio-accounts
invenio-oauth2server
invenio-oauthclient

invenio-userprofiles

Metadata bundle

invenio-indexer
invenio-jsonschemas
invenio-oaiserver
invenio-pidstore
invenio-records

invenio-records-rest

40

Chapter 8. Releases

https://inveniosoftware.org/roadmap/
https://invenio.readthedocs.io
http://invenio-admin.readthedocs.io
http://invenio-app.readthedocs.io
http://invenio-assets.readthedocs.io
http://invenio-base.readthedocs.io
http://invenio-celery.readthedocs.io
http://invenio-config.readthedocs.io
http://invenio-db.readthedocs.io
http://invenio-formatter.readthedocs.io
http://invenio-i18n.readthedocs.io
http://invenio-logging.readthedocs.io
http://invenio-mail.readthedocs.io
http://invenio-rest.readthedocs.io
http://invenio-theme.readthedocs.io
http://invenio-access.readthedocs.io
http://invenio-accounts.readthedocs.io
http://invenio-oauth2server.readthedocs.io
http://invenio-oauthclient.readthedocs.io
http://invenio-userprofiles.readthedocs.io
http://invenio-indexer.readthedocs.io
http://invenio-jsonschemas.readthedocs.io
http://invenio-oaiserver.readthedocs.io
http://invenio-pidstore.readthedocs.io
http://invenio-records.readthedocs.io
http://invenio-records-rest.readthedocs.io

invenio Documentation, Release 3.0.0

¢ invenio-records-ui
¢ invenio-search

¢ invenio-search-ui

8.1.3 Python compatibility

Invenio v3.0 supports Python 2.7, 3.5, 3.6. We highly recommend only using the latest official release in each series.

Python 2.7 end-of-life is scheduled for April 2020. Invenio will only support Python 2.7 until that date. We highly
recommend that all new projects are started latest available Python 3 version.

8.1.4 Elasticsearch compatibility

Invenio v3.0 supports Elasticsearch 2, 5 and 6.

Elasticsearch v2 has reach end-of-life (February 2018) and Invenio v3.0 is the last release to support Elasticsearch v2.

8.1.5 PostgreSQL compatibility

Invenio v3.0 supports PostgreSQL 9.4 and 9.6. We have not yet tested Invenio v3.0 with PostgreSQL 10.

8.1.6 MySQL compatibility

Invenio v3.0 supports MySQL 5.6+.

8.1.7 Deprecations
Webpack

Invenio v3.0’s current static assets management system is based on e.g. RequireJS will be replaced with Webpack. We
expect this work to be ready for Invenio v3.1, and thus we are already deprecating the current support. Specifically
this means that Invenio-Assets and Invenio-Theme will change significantly in Invenio v3.1. We would have liked to
already have this ready for this v3.0 release, but unfortunately it was time-wise not possible.

AngularJS

Invenio v3.0 comes with one AngularJS 1.4 application (Invenio-Search-JS). Angular]S is by now already outdated,
and we are planning a rewrite of the application in another JavaScript framework that is currently in process of being
selected. Essentially this means that you should not extend Invenio-Search-JS at this point, since it will change
significantly.

8.1.8 Maintenance policy

Invenio v3.0 will be supported with bug and security fixes until the release of Invenio v3.2 and minimum one year.

We aim at one Invenio release with new features every 6 months. We expect upgrades between minor versions (e.g.
v3.1 to v3.2) to be fairly straight-forward as in most cases only new features are added.

8.1. Version 3.0.0 41

http://invenio-records-ui.readthedocs.io
http://invenio-search.readthedocs.io
http://invenio-search-ui.readthedocs.io

invenio Documentation, Release 3.0.0

8.2 Version 2.x

End-of-life

Invenio v2.x code base is a hybrid architecture that uses Flask web development framework combined with Invenio
v1.x framework.

Note: The 2.x code base is not suitable for production systems, and will not receive any further development nor
security fixes.

Released versions include:

Invenio v2.1:
e v2.1.1 - released 2015-09-01
* v2.1.0 - released 2015-06-16

Invenio v2.0:
* v2.0.6 - released 2015-09-01
* v2.0.5 - released 2015-07-17
e v2.0.4 - released 2015-06-01
* v2.0.3 - released 2015-05-15
* v2.0.2 - released 2015-04-17
* v2.0.1 - released 2015-03-20
e v2.0.0 - released 2015-03-04

8.3 Version 1.x

End-of-life

Invenio v1.x code base is suitable for stable production. It uses legacy technology and custom web development
framework.

Note: Invenio v1.x has reached end-of-life and will not receive any further development nor security fixes.

Invenio v1.2.2 is the last stable release from the old Invenio legacy technology code base. If you have been using one
of previous Invenio versions, it is recommended to upgrade to this version.

Note: If you would like to check out Invenio v1.2 locally please see our important note how to install it.

Released versions include:

Invenio v1.2:
e v1.2.2 - released 2016-11-25
e v1.2.1 - released 2015-05-21
* v1.2.0 - released 2015-03-03

42 Chapter 8. Releases

https://github.com/inveniosoftware/invenio/releases/tag/v2.1.1
https://github.com/inveniosoftware/invenio/releases/tag/v2.1.0
https://github.com/inveniosoftware/invenio/releases/tag/v2.0.6
https://github.com/inveniosoftware/invenio/releases/tag/v2.0.5
https://github.com/inveniosoftware/invenio/releases/tag/v2.0.4
https://github.com/inveniosoftware/invenio/releases/tag/v2.0.3
https://github.com/inveniosoftware/invenio/releases/tag/v2.0.2
https://github.com/inveniosoftware/invenio/releases/tag/v2.0.1
https://github.com/inveniosoftware/invenio/releases/tag/v2.0.0
https://inveniosoftware.org/legacy/
https://github.com/inveniosoftware/invenio/releases/tag/v1.2.2
https://github.com/inveniosoftware/invenio/releases/tag/v1.2.1
https://github.com/inveniosoftware/invenio/releases/tag/v1.2.0

invenio Documentation, Release 3.0.0

Invenio v1.1:

v1.1.7 - released 2016-11-20
v1.1.6 - released 2015-05-21
v1.1.5 - released 2015-03-02
v1.1.4 - released 2014-08-31
v1.1.3 - released 2014-02-25
v1.1.2 - released 2013-08-19
v1.1.1 - released 2012-12-21
v1.1.0 - released 2012-10-21

Invenio v1.0:

8.4

v1.0.10 - released 2016-11-09
v1.0.9 - released 2015-05-21
v1.0.8 - released 2015-03-02
v1.0.7 - released 2014-08-31
v1.0.6 - released 2014-01-31
v1.0.5 - released 2013-08-19
v1.0.4 - released 2012-12-21
v1.0.3 - released 2012-12-19
v1.0.2 - released 2012-10-19
v1.0.1 - released 2012-06-28
v1.0.0 - released 2012-02-29

v1.0.0-rcO - released 2010-12-21

Version 0.x

Invenio v0.x code base was developed and used in production instances since 2002. The code base is interesting only
for archaeological purposes.

Released versions include:

v0.99.9 - released 2014-01-31
v0.99.8 - released 2013-08-19
v0.99.7 - released 2012-12-18
v0.99.6 - released 2012-10-18
v0.99.5 - released 2012-02-21
v0.99.4 - released 2011-12-19
v0.99.3 - released 2010-12-13
v0.99.2 - released 2010-10-20
v0.99.1 - released 2008-07-10

8.4. Version 0.x

43

https://github.com/inveniosoftware/invenio/releases/tag/v1.1.7
https://github.com/inveniosoftware/invenio/releases/tag/v1.1.6
https://github.com/inveniosoftware/invenio/releases/tag/v1.1.5
https://github.com/inveniosoftware/invenio/releases/tag/v1.1.4
https://github.com/inveniosoftware/invenio/releases/tag/v1.1.3
https://github.com/inveniosoftware/invenio/releases/tag/v1.1.2
https://github.com/inveniosoftware/invenio/releases/tag/v1.1.1
https://github.com/inveniosoftware/invenio/releases/tag/v1.1.0
https://github.com/inveniosoftware/invenio/releases/tag/v1.0.10
https://github.com/inveniosoftware/invenio/releases/tag/v1.0.9
https://github.com/inveniosoftware/invenio/releases/tag/v1.0.8
https://github.com/inveniosoftware/invenio/releases/tag/v1.0.7
https://github.com/inveniosoftware/invenio/releases/tag/v1.0.6
https://github.com/inveniosoftware/invenio/releases/tag/v1.0.5
https://github.com/inveniosoftware/invenio/releases/tag/v1.0.4
https://github.com/inveniosoftware/invenio/releases/tag/v1.0.3
https://github.com/inveniosoftware/invenio/releases/tag/v1.0.2
https://github.com/inveniosoftware/invenio/releases/tag/v1.0.1
https://github.com/inveniosoftware/invenio/releases/tag/v1.0.0
https://github.com/inveniosoftware/invenio/releases/tag/v1.0.0-rc0
https://github.com/inveniosoftware/invenio/releases/tag/v0.99.9
https://github.com/inveniosoftware/invenio/releases/tag/v0.99.8
https://github.com/inveniosoftware/invenio/releases/tag/v0.99.7
https://github.com/inveniosoftware/invenio/releases/tag/v0.99.6
https://github.com/inveniosoftware/invenio/releases/tag/v0.99.5
https://github.com/inveniosoftware/invenio/releases/tag/v0.99.4
https://github.com/inveniosoftware/invenio/releases/tag/v0.99.3
https://github.com/inveniosoftware/invenio/releases/tag/v0.99.2
https://github.com/inveniosoftware/invenio/releases/tag/v0.99.1

invenio Documentation, Release 3.0.0

v0.99.0 - released 2008-03-27
v0.92.1 - released 2007-02-20

v0.92.0. - released 2006-12-22

v0.90.1 - released 2006-07-23
v0.90.0 - released 2006-06-30
v0.7.1 - released 2005-05-04
v0.7.0 - released 2005-04-06
v0.5.0 - released 2004-12-17
v0.3.3 - released 2004-07-16
v0.3.2 - released 2004-05-12
v0.3.1 - released 2004-03-12
v0.3.0 - released 2004-03-05
v0.1.2 - released 2003-12-21
v0.1.1 - released 2003-12-19
v0.1.0 - released 2003-12-04
v0.0.9 - released 2002-08-01

44

Chapter 8. Releases

https://github.com/inveniosoftware/invenio/releases/tag/v0.99.0
https://github.com/inveniosoftware/invenio/releases/tag/v0.92.1
https://github.com/inveniosoftware/invenio/releases/tag/v0.92.0
https://github.com/inveniosoftware/invenio/releases/tag/v0.90.1
https://github.com/inveniosoftware/invenio/releases/tag/v0.90.0
https://github.com/inveniosoftware/invenio/releases/tag/v0.7.1
https://github.com/inveniosoftware/invenio/releases/tag/v0.7.0
https://github.com/inveniosoftware/invenio/releases/tag/v0.5.0
https://github.com/inveniosoftware/invenio/releases/tag/v0.3.3
https://github.com/inveniosoftware/invenio/releases/tag/v0.3.2
https://github.com/inveniosoftware/invenio/releases/tag/v0.3.1
https://github.com/inveniosoftware/invenio/releases/tag/v0.3.0
https://github.com/inveniosoftware/invenio/releases/tag/v0.1.2
https://github.com/inveniosoftware/invenio/releases/tag/v0.1.1
https://github.com/inveniosoftware/invenio/releases/tag/v0.1.0
https://github.com/inveniosoftware/invenio/releases/tag/v0.0.9

CHAPTER 9

Community

Notes on getting involved, contributing, legal information and release notes are here for the interested.

9.1 Getting help

Didn’t find a solution to your problem the Invenio documentation? Here’s how you can get in touch with other users
and developers:

Forum/Knowledge base

* https://github.com/inveniosoftware/troubleshooting

Ask questions or browse answers to exsiting questions.

Chatroom

* https://gitter.im/inveniosoftware/invenio

Probably the fastest way to get a reply is to join our chatroom. Here most developers and maintainers of Invenio
hangout during their regular working hours.

GitHub

* https://github.com/inveniosoftware

If you have feature requests or want to report potential bug, you can do it by opening an issue in one of the individual
Invenio module repositories. In each repository there is a MAINTAINERS file in the root, which lists the who is
maintaining the module.

45

https://github.com/inveniosoftware/troubleshooting
https://gitter.im/inveniosoftware/invenio
https://github.com/inveniosoftware

invenio Documentation, Release 3.0.0

9.2 Communication channels

9.2.1 Chatrooms

Most day-to-day communication is happening in our chatrooms:
* Public chatroom (for everyone)
* Developer chatroom (for members of inveniosoftware GitHub organisation).

If you want to join the developer chatroom, just ask for an invite on the public chatroom.

9.2.2 GitHub

Most of the developer communication is happening on GitHub. You are stroungly encouraged to join https:
//github.com/orgs/inveniosoftware/teams/developers team and watch notifications from various https://github.com/
inveniosoftware/ organisation repositories of interest.

9.2.3 Meetings

Invenio Developer Forum
Monday afternoons at 16:00 CET/CEST time we meet physically at CERN and virtually over videoconference to
discuss interesting development topics.
You can join our Monday forums from anywhere via videoconference. Here the steps:
e View the agenda (ical feed).
* Install the videoconferencing client Vidyo.

¢ Join our virtual room.

Invenio User Group Workshop

We meet among Invenio users and developers from around the world at a yearly Invenio User Group Workshop.
The workshop consists of a series of presentations, tutorials, practical exercises, and discussions on topics related to
Invenio digital library management and development. We exchange knowledge and experiences and drive forward the
forthcoming developments of the Invenio platform.

See list of upcoming and past workshops.
Other meetings

In addition to above meetings where everyone can join, the following meetings exists:

* Quarterly project coordination meeting with the Invenio project coordinators and architects that help steer the
project prioritizes and goals.

* Weekly architecture meeting.

9.2.4 Project website

Our project website, http://inveniosoftware.org, is used to show case Invenio.

46 Chapter 9. Community

https://gitter.im/inveniosoftware/invenio
https://gitter.im/inveniosoftware/invenio
https://github.com/orgs/inveniosoftware/people
https://github.com/orgs/inveniosoftware/teams/developers
https://github.com/orgs/inveniosoftware/teams/developers
https://github.com/inveniosoftware/
https://github.com/inveniosoftware/
https://indico.cern.ch/category/6046/
https://indico.cern.ch/export/categ/6046.ics?from=-31d
https://vidyoportal.cern.ch/
https://vidyoportal.cern.ch/join/a6GP8E71EU
https://indico.cern.ch/category/6240/
http://inveniosoftware.org

invenio Documentation, Release 3.0.0

9.2.5 Email

You can get in touch with the Invenio management team on info@inveniosoftware.org.

In particular use above email address to report security related issues privately to us, so we can distribute a security
patch before potential attackers look at the issue.

9.2.6 Twitter

The official Twitter account for Invenio software is used mostly for announcing new releases and talks at conferences:

* https://twitter.com/inveniosoftware

9.2.7 Mailing lists

The mailing lists are currently not very active and are primiarly listed here for historical reasons.

* project—-invenio—announce@cern.ch: Read-only moderated mailing list to announce new Invenio
releases and other major news concerning the project. subscribe to announce, archive

* project-invenio-general@cern.ch: Originally used for discussion among users and administrators
of Invenio instances. The mailing list has mostly been replaced by our public chatroom. subscribe to general,
new general archive, old general archive

* project-invenio-devel@cern.ch: Originally used for discussion among Invenio developers. The
mailing list has mostly been replaced by our developer chatroom. subscribe to devel, new devel archive, old
devel archive

Note that all the mailing lists are also archived (as of the 20th of July, 2011) on The Mail Archive.
9.3 Contribution guide

Interested in contributing to the Invenio project? There are lots of ways to help.

Code of conduct

Overall, we’re open, considerate, respectful and good to each other. We contribute to this community not because
we have to, but because we want to. If we remember that, our Code of Conduct will come naturally.

Get in touch

See Getting help and Communication channels. Don’t hesitate to get in touch with the Invenio maintainers. The
maintainers can help you kick start your contribution.

9.3.1 Types of contributions

Report bugs

* Found a bug? Want a new feature? Open a GitHub issue on the applicable repository and get the conversation
started (do search if the issue has already been reported). Not sure exactly where, how, or what to do? See
Getting help.

9.3. Contribution guide 47

mailto:info@inveniosoftware.org
https://twitter.com/inveniosoftware
https://simba3.web.cern.ch/simba3/SelfSubscription.aspx?groupName=project-invenio-announce
https://groups.cern.ch/group/project-invenio-announce/Lists/Archive/100.aspx
https://simba3.web.cern.ch/simba3/SelfSubscription.aspx?groupName=project-invenio-general
https://groups.cern.ch/group/project-invenio-general/Lists/Archive/100.aspx
https://groups.cern.ch/group/project-cdsware-users/Lists/Archive/100.aspx
https://simba3.web.cern.ch/simba3/SelfSubscription.aspx?groupName=project-invenio-devel
https://groups.cern.ch/group/project-invenio-devel/Lists/Archive/100.aspx
https://groups.cern.ch/group/project-cdsware-developers/Lists/Archive/100.aspx
https://groups.cern.ch/group/project-cdsware-developers/Lists/Archive/100.aspx
http://www.mail-archive.com/

invenio Documentation, Release 3.0.0

* Found a security issue? Alert us privately at info@inveniosoftware.org, this will allow us to distribute a
security patch before potential attackers look at the issue.

Translate

¢ Missing your favourite language? Translate Invenio on Transifex

* Missing context for a text string? Add context notes to translation strings or report the issue as a bug (see
above).

* Need help getting started? See our Translation guide.

Write documentation

* Found a typo? You can edit the file and submit a pull request directly on GitHub.

* Debugged something for hours? Spare others time by writing up a short troubleshooting piece on https:
//github.com/inveniosoftware/troubleshooting/.

* Wished you knew earlier what you know now? Help write both non-technical and technical topical guides.

Write code

¢ Need help getting started? See our Quickstart.

* Need help setting up your editor? See our Developer environment guide guide which helps your automate the
tedious tasks.

* Want to refactor APIs? Get in touch with the maintainers and get the conversation started.

¢ Troubles getting green light on Travis? Be sure to check our Style guide and the Developer environment guide.
It will make your contributor life easier.

* Bootstrapping a new awesome module? Use our Invenio cookiecutter templates for modules, instances or
data models

9.3.2 Style guide (TL;DR)
Travis CI is our style police officer who will check your pull request against most of our Style guide, so do make sure
you get a green light from him.

ProTip: Make sure your editor is setup to do checking, linting, static analysis etc. so you don’t have to think. Need
help setting up your editor? See Developer environment guide.

Commit messages
Commit message is first and foremost about the content. You are communicating with fellow developers, so be clear
and brief.
(Inspired by How to Write a Git Commit Message)
1. Separate subject from body with a blank line
2. Limit the subject line to 50 characters

3. Indicate the component follow by a short description

48 Chapter 9. Community

mailto:info@inveniosoftware.org
https://www.transifex.com/inveniosoftware/invenio/
https://github.com/inveniosoftware/troubleshooting/
https://github.com/inveniosoftware/troubleshooting/
http://github.com/inveniosoftware/cookiecutter-invenio-module
http://github.com/inveniosoftware/cookiecutter-invenio-instance
http://github.com/inveniosoftware/cookiecutter-invenio-datamodel
https://chris.beams.io/posts/git-commit/
https://chris.beams.io/posts/git-commit/#separate
https://chris.beams.io/posts/git-commit/#limit-50

invenio Documentation, Release 3.0.0

4. Do not end the subject line with a period

5. Use the imperative mood in the subject line

6. Wrap the body at 72 characters

7. Use the body to explain what and why vs. how, using bullet points

ProTip: Really! Spend some time to ensure your editor is top tuned. It will pay off many-fold in the long run. See
Developer environment guide.

For example:

component: sumarize changes in 50 char or less

+ More detailed explanatory text, if necessary. Formatted using
bullet points, preferabely "* . Wrapped to 72 characters.

+ Explain the problem that this commit is solving. Focus on why you
are making this change as opposed to how (the code explains that).
Are there side effects or other unintuitive consequences of this
change? Here's the place to explain them.

+ The blank line separating the summary from the body is critical
(unless you omit the body entirely); wvarious tools like “log’,
‘shortlog’ and “rebase’ can get confused if you run the two
together.

* Use words like "Adds", "Fixes" or "Breaks" in the listed bullets to help
others understand what you did.

* If your commit closes or addresses an issue, you can metion
it in any of the bullets after the dot. (closses #XXX) (addresses
#YYY)

Co—authored-by: John Doe <john.doelexample.com>

Git signature: The only signature we use is Co—authored-by (see above) to provide credit to co-authors. Previ-
ously we required a Signed—-of f-by signature, however this is no longer required.

9.3.3 Pull requests

Need help making your first pull request? Check out the GitHub guide Forking Projects.
When making your pull request, please keep the following in mind:

* Create logically separate commits for logically separate things.

* Include tests and don’t decrease test coverage.

* Do write documentation. We all love well-documented frameworks, right?

* Run tests locally using run-tests. sh script.

* Make sure you have the rights if you include third-party code (and do credit the orignial creator). Note, you
cannot include GPL or AGPL licensed code. LGPL and other more permissive open source license or fine.

* Green light on all GitHub status checks is required in order to merge your PR.

9.3. Contribution guide 49

https://chris.beams.io/posts/git-commit/#end
https://chris.beams.io/posts/git-commit/#imperative
https://chris.beams.io/posts/git-commit/#wrap-72
https://chris.beams.io/posts/git-commit/#why-not-how
https://guides.github.com/activities/forking/

invenio Documentation, Release 3.0.0

Work in progress (WIP)

Do publish your code as pull request sooner than later. Just prefix the pull request title with WIP (=work in progress)
if it is not quite ready.

Allow edits from maintainers

To speed up the integration process, it helps if on GitHub you allow maintainers to edit your pull request so they can
fix small issues autonomously.

9.4 Style guide

9.4.1 Python

We follow PEP-8 and PEP-257 and sort imports via isort. Please plug corresponding linters such as f1ake8 to
your editor.

9.4.2 Commit message

Todo: Needs to be combined from existing parts and write the missing parts.

Indicate the component follow by a short description
We know space is precious and 50 characters is not much for the subject line, but maintainers and other people in
general will appreciate if you can narrow the focus of your commit in the subject.

Normal components match to the python modules inside the repository, i.e. api, views, or config. There are other
components which correspond to a wider scope like tests or docs. And finally there is third category which doesn’t
correspond to any file or folder in particular:

* installation: use it when modifying things like requirements files or setup.py.
* release: only to be used by maintainers.

If one commit modifies more than one file, i.e. api.py and views.py, common sense should be applied, what represents
better the changes the commit makes? Remember you can always as for the modules maintainer’s opinion.

Use the body to explain what and why vs. how using bullet points

Take a look at the full diff and just think how much time you would be saving fellow and future committers by taking
the time to provide this context here and now. If you don’t, it would probably be lost forever.

In most cases, you can leave out details about how a change has been made.

In most cases, you can leave out details about how a change has been made. Code is generally self-explanatory in
this regard (and if the code is so complex that it needs to be explained in prose, that’s what source comments are for).
Just focus on making clear the reasons why you made the change in the first place—the way things worked before the
change (and what was wrong with that), the way they work now, and why you decided to solve it the way you did.
Using bullet points will help you be precise and direct to the point.

50 Chapter 9. Community

https://help.github.com/articles/allowing-changes-to-a-pull-request-branch-created-from-a-fork/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/

invenio Documentation, Release 3.0.0

If you find your self writing a rather long commit message, maybe it’s time to step back and consider if you are doing
too many changes in just one commit and whether or not it’s worth splitting it in smaller peaces.

And remember, the future maintainer that thanks you for writing good commit messages may be yourself!

9.4.3 Submitting a pull request

All proposed changes to any of the Invenio modules are made as GitHub pull requests, if this is the first time you are
making a contribution using GitHub, please check this.

Once you are ready to make your pull request, please keep in mind the following:

» Before creating your pull request run the run-tests.sh script, this will help you discover possible side effects of
your code and ensure it follows Invenio’s style guidelines, check Development Environment for more informa-
tion on how you can run this script.

* Every pull request should include tests to check the expected behavior of your changes and must not decrease
test coverage. If it fixes a bug it should include a test which proves the incorrect behavior.

¢ Documenting is part of the development process, no pull request will be accepted if there is missing documen-
tation.

* No pull request will be merged until all automatic checks are green and at least one maintainer approves it.

9.4.4 Maintainers

The Invenio project follows a similar maintainer phylosofy as docker. If you want to know more about it or take part,
you can read our Maintainer’s guide.

9.4.5 FAQ
9.5 Developer environment guide

You can save a lot of time and frustrations by spending some time setting up your development environment. We
have primarily adopted existing community style guides, and in most cases the formatting and checking can be fully
automated by your editor.

9.5.1 Editor

You can use any code editor of your choice. Here we give a brief overview of some of the editors our existing
developers are using. For all editors, the most important is support for EditorConfig

EditorConfig

All repositories have a .editorconfig file which defines indention style, text encoding, newlines etc. Many
editors either come with built-in support or plugins that reads the .editorconfig file and configures your editor
accordingly.

See EditorConfig for list of supported editors.

9.5. Developer environment guide 51

https://guides.github.com/activities/forking/
http://invenio.readthedocs.io/en/feature-ils/community/style-guide.html
http://invenio.readthedocs.io/en/feature-ils/developersguide/development-environment.html
https://github.com/docker/docker/blob/master/MAINTAINERS
http://invenio.readthedocs.io/en/feature-ils/community/maintainers-guide/index.html
https://editorconfig.org
https://editorconfig.org

invenio Documentation, Release 3.0.0

Editors

Following editors (listed alphabetically) are used by our existing developers. Don’t hesitate to reach out on our Gitter

channel, to ask for help for useful plugins:
e Atom
* Emacs
e PyCharm
* Sublime
« VIM
* Visual Studio Code

Plugins for editors

The key plugins you should look for in your editor of choice are:
* Python / JavaScript environment
» PEP8 / PEP257 style checking

e Isort plugin.

9.6 Translation guide

Invenio has been translated to more than 25 languages.

9.6.1 Transifex

All Invenio internationalisation and localisation efforts are happening on the Transifex collaborative localisation plat-

form.

You can start by exploring Invenio project dashboard on Transifex.

Invenio project consists of many resource files which can be categorised as follows:
* invenio-maintl0-messages contains phrases for Invenio 1.0 legacy release series
* invenio-maintll-messages contains phrases for Invenio 1.1 legacy release series
* invenio-maintl2-messages contains phrases for Invenio 1.2 legacy release series
* invenio-xxx-messages contains phrases for Invenio 3.0 invenio—-xxx module

We follow the usual Transifex localisation workflow that is extensively documented.

9.6.2 Translators

All contributions with translating phrases or with reviewing translations are very appreciated!

Please read Getting started as a translator and join Invenio project on Transifex.

52 Chapter 9

. Community

https://atom.io
https://www.gnu.org/software/emacs/
https://www.jetbrains.com/pycharm/
https://www.sublimetext.com
https://www.vim.org
https://code.visualstudio.com
https://isort.readthedocs.io/en/latest/
https://www.transifex.com/
https://www.transifex.com/inveniosoftware/invenio/dashboard/Invenio
https://docs.transifex.com/
https://docs.transifex.com/getting-started/translators

invenio Documentation, Release 3.0.0

9.6.3 Developers

Please see dedicated invenio-i18n documentation.

9.7 Maintainer’s guide

Following is a guide for maintainers and architects who are the responsible for maintaining one or more repositories.

9.7.1 Overview

The goal of the maintainer system is to share the load of maintaining Invenio, spread Invenio experise and mentor new
contributors. Overall maintainers are key to ensuring that Invenio has a welcoming, responsive, collaborative open
and transparent community.

The maintainer system is designed to allow contributors to progressively take more and more responsibility in the
project, while allowing for mistakes and providing contributors with training, support and mentorship they need in
order to perform their tasks.

What is a maintainer?

Maintainers are first and foremost service people. They help drive Invenio development forward and ensure newcomers
as well as long-time contributors have a great experience when contributing to Invenio, which is key to Invenio’s
longterm success.

Maintainers are not only developers. We also need maintainers for translations, the website, forums, interest groups
etc.

Taks:
 Help contributors get their contributions integrated in Invenio.
* Answer questions and help users in e.g. the chat rooms (see Communication channels).
* Manage issues, assignments and milestones.
* Review and merge pull requests.
* Prepare releases.
* Participate in feature development, bug fixing and proactively verfies if nightly builds are failing.

* Be the domain expert on a specific topic (e.g. know the architecture of a module and how it fits into the rest of
Invenio).

* Help scout for and train for potential new maintainers.

What is an architect?
Architects are like normal maintainers, they just maintain many more repositories and have larger overview over the
Invenio architecture and ecosystem. Architects shapes and drives the overall Invenio technical architecture.
Tasks (in addition to maintainer tasks):
¢ Provide mentorship for maintainers.

* Determine the overall Invenio architecture and ecosystem and ensure coherence thoughout the Invenio develop-
ment.

9.7. Maintainer’s guide 53

https://invenio-i18n.readthedocs.io/en/latest/usage.html

invenio Documentation, Release 3.0.0

* Be the Invenio experts and know of use cases and interdependencies between different modules.

 Signs off on new releases in their respective repositories.

Becoming a maintainer
Don’t forget: being a maintainer is a time investment. Make sure you will have time to make yourself available. You
don’t have to be a maintainer to make a difference on the project!

Still sounds like something for you? Get in contact with one the Invenio product manager, one of the architects or one
of the project coordinators. They will help you through the process. See Communication channels.

Stepping down as maintainer

Don’t have enough time? Changing jobs? No problem, all we ask is that you step down gracefully. Try to help find
a new maintainer (if you don’t alrady have a co-maintainer) and help hand-over pending tasks and knowledge to the
existing or new maintainers.

As soon as you know you want to step down, please notify the Invenio product manager or one of the architects team
members so we can help in the transition.

9.7.2 Setting up a repository
First, reach out to the Invenio architects and agree on scope and name of the new repository. The architects are their
to help you and to ensure that the module fits into the larger Invenio ecosystem.

New repositories can be created in either the inveniosoftware or the inveniosoftware-contrib GitHub organisations.
Repositories in inveniosoftware must be managed according to the contributor, style and maintainers guides. Reposi-
tories in inveniosoftware-contrib are free to apply any rules they like.

GitHub

Once scope and name has been agreed upon, the product manager will create the repository which will be setup in the
following manner:

¢ Settings: The repository settings must be set in the following manner:

Description and homepage (link to readthedocs.io) must be set.

Issues must be enabled.

Wiki should be disabled (except in rare circumstances such as the main Invenio repository).
— Merge button: must disallow merge commits, allow squash and allow rebase merging.

e Teams: A team named <repository-name>-maintainers must exists with all repository maintainers
as members and with push permission on the repository.

¢ Branch protection: The default branch, all maintenance branches and optionally some feature branches must
have branch protection enabled in the following manner:

— Pull requests reviews must not be required. Enabling this feature prevents maintainers from merging their
own PRs without approval from another reviewer. This is not a carte blanche for maintainers to merge
their own PRs without reviews, but empowers them to get the job done when really need!

— Status checks for TravisCI must be required. Status checks for Coveralls, QuantifiedCode and other status
checks must not be required. The maintainer is responsible for manually verifing these checks.

54 Chapter 9. Community

https://github.com/inveniosoftware
https://github.com/inveniosoftware-contrib

invenio Documentation, Release 3.0.0

— Branches must be up to date before merging.
— Push access must be restricted to the repository maintainers team.
* Repository files: A MAINTAINERS file with list of GitHub usernames must be present in the repository.

The repository setup and manage is fully automated via the Metalnvenio scripts.

Other services

We use the following other external services:
* TravisCI for continues integration testing.
» Coveralls to test coverage tracking.
* QuantifiedCode for Python static analysis.
¢ Python Package Index for releasing Python packages.
* NPM for releasing JavaScript packags.
e ReadTheDocs for hosting documentation.

e Transifex for translating Invenio.

Bootstrapping

New repositories should in most cases be bootstrapped using one of our templates. These templates encodes many
best practices, setups above external services correctly and ensure a coherent package structure throughout the Invenio
project.

Python

Python-based repositories must be bootstraped using the cookiecutter-invenio-module.

JavaScript

JavaScript-based repositories must be boostraped using the generator-invenio-js-module.

9.8 Governance

Invenio is governed by CERN for the benefit of the community. CERN strives to make Invenio a collaborative, open
and transparent project to ensure that everyone can contribute and have their say on the directions of the project.

Invenio governance is in general informal and we try to strike a balance between processes and agreed upon stan-
dards vs. the wild west where everyone do as they see fit. The governance model is intended to allow that people
progressively take larger and larger responsibilities with support from the existing leadership.

These following sections define the different roles and responsibilities in the project, define how decisions are taken
and how people are appointed to different roles. Overall, we expect every person who participates in the project to
adhere to our Code of Conduct.

9.8. Governance 55

https://github.com/inveniosoftware/metainvenio
http://travis-ci.org
https://coveralls.io
https://www.quantifiedcode.com
https://pypi.org
https://npmjs.com
https://readthedocs.org
https://www.transifex.com
https://github.com/inveniosoftware/cookiecutter-invenio-module
https://github.com/inveniosoftware/generator-invenio-js-module/

invenio Documentation, Release 3.0.0

Note: The currrent governance model puts in words how the collaboration currently works in practice today and sets
a basic framework for how we collaborate and take decisions in the project.

If the nature of the community or contributors changes this governance model may be reviewed and changed if neces-
sary.

9.8.1 Roles and responsibilities
The product manager, coordinators, architects and maintainers (as defined below) make up the leadership of Invenio.
The leaders of Invenio are service people who:
* take an active role in driving the project forward,
* help newcomers as well as long-time contributors have great experience contributing to Invenio,
* help train members to progressive take larger responsibility in the project,
¢ are role models for the remaining community.
Roles:
* Members: Anyone using Invenio.
* Contributors: Anyone contributing to Invenio (in it widest possible interpretation, i.e. not only programmers).

¢ Maintainers: Anyone maintaining at least one repository. Maintainers are responsible for managing the issues
and/or the code base of a repository according to Invenio’s standards.

* Architects: Anyone maintaining 20+ repositories (though max 10 people). Architects are responsible for the
overall Invenio technical architecture as well as managing and training maintainers on their respective reposito-
ries.

* Coordinators: Representatives of Invenio based services that would like to coordinate their Invenio develop-
ment efforts with other services and provide input on the product road map.

* Product manager: Overall responsible for Invenio’s vision, strategy and day-to-day management. Responsible
for managing and training architects and coordinators.

Commit access on repositories are given to contributors, maintainers and architects. Contributors can commit/merge to
feature branches while only maintainers and architects can commit/merge to master/maintenance branches (meaning
also only they can release packages to PyPI and NPM).

9.8.2 Decision making

We strive to take decisions openly and by consensus, though ultimately CERN represented by the Invenio product
manager has the final say on all decisions in the project. In particular this means that there is no formal voting
procedure for Invenio.

Leaders drive decision making

The Invenio product manager, architects, coordinators and maintainers as the leaders of the project are responsible for
driving decision making in their respective domains.

Driving decision making means:

» facilitating an open constructive discussion around a decision that matches the level of importance and impact
of a decision,

56 Chapter 9. Community

invenio Documentation, Release 3.0.0

* striving for reaching consensus on a decision and ensuring relevant other members are aware and included on
the decision,

* ensuring decisions are in alignment with the overall Invenio vision, strategy, architecture and standards,
¢ coordinating the decision with the Invenio leadership (product manager, architects and coordinators),
* taking the decision.

Leaders implement decisions

Leaders are responsible for following up decisions they take by actual implementation. Decision should not be con-
sidered final unless it is actually implemented or documented publicly.

Disagreements

Leaders of the project should always strive for consensus. If that is not possible the leader taking a decision should
alert the Invenio product manager prior to taking the decision.

Members who are disagreeing with a decision may ask the product manager to review a specific decision and possible
change it.

Members who are disagreeing with the Invenio product manager may escalate the product manager’s decision to their
hierarchy at CERN.

9.8.3 Appointments
The Invenio product manager is appointed by CERN. Architects, coordinators and maintainers are appointed by the
Invenio product manager in collaboration with existing architects and coordinators.

Maintainers are appointed by the architects (e.g. a new Invenio module) or coordinators (e.g. a new special interest
group).

In general, appointments are made in an informal way, and usually anyone volunteering that have been showing
commitment to the project will get appointed. Any member can volunteer or suggest other members for roles.

Revoking of appointed roles

The product manager may revoke appointed roles of a member for reasons such as (but not limitied to):
¢ lack of activity
* violations of the code of conduct
* repeated infringements of the contribution, style or maintainer guides.

The product manager must give a warning to the member to allow them to correct their behavior except in severe cases.
Revoking roles should be a last measure, and only serve the purpose to ensure that Invenio has a healthy community
and collaboration based on our Code of Conduct.

9.8.4 Working/Interest groups

Working/interest groups may be set up by the product manager on request of any group of members who wish to
address a particular area of Invenio (say MARC21 support or research data management). Working/interest groups
help coordinate the overall vision, strategy and architecture of a specific area of Invenio. Each working/interest group
must have chair that reports to the product manager.

9.8. Governance 57

invenio Documentation, Release 3.0.0

9.9 Code of Conduct

We endorse the Python Community Code of Conduct:

The Invenio community is made up of members from around the globe with a diverse set of skills, person-
alities, and experiences. It is through these differences that our community experiences great successes
and continued growth. When you’re working with members of the community, we encourage you to fol-
low these guidelines which help steer our interactions and strive to keep Invenio a positive, successful,
and growing community.

A member of the Invenio community is:

1. Open. Members of the community are open to collaboration, whether it’s on RFCs, patches, problems,
or otherwise. We’re receptive to constructive comment and criticism, as the experiences and skill sets of
other members contribute to the whole of our efforts. We’re accepting of all who wish to take part in our
activities, fostering an environment where anyone can participate and everyone can make a difference.

2. Considerate. Members of the community are considerate of their peers — other Invenio users. We’re
thoughtful when addressing the efforts of others, keeping in mind that often times the labor was completed
simply for the good of the community. We’re attentive in our communications, whether in person or
online, and we’re tactful when approaching differing views.

3. Respectful. Members of the community are respectful. We’re respectful of others, their positions,
their skills, their commitments, and their efforts. We’re respectful of the volunteer efforts that permeate
the Invenio community. We’re respectful of the processes set forth in the community, and we work within
them. When we disagree, we are courteous in raising our issues.

Overall, we’re good to each other. We contribute to this community not because we have to, but because
we want to. If we remember that, these guidelines will come naturally.

We recommend the “egoless” programming principles (Gerald Weinberg, The Psychology of Computer Programming,
1971):

1.

Understand and accept that you will make mistakes. The point is to find them early, before they make it
into production. Fortunately, except for the few of us developing rocket guidance software at JPL, mistakes are
rarely fatal in our industry, so we can, and should, learn, laugh, and move on.

You are not your code. Remember that the entire point of a review is to find problems, and problems will be
found. Don’t take it personally when one is uncovered.

. No matter how much “karate” you know, someone else will always know more. Such an individual can

teach you some new moves if you ask. Seek and accept input from others, especially when you think it’s not
needed.

Don’t rewrite code without consultation. There’s a fine line between “fixing code” and “rewriting code.”
Know the difference, and pursue stylistic changes within the framework of a code review, not as a lone enforcer.

Treat people who know less than you with respect, deference, and patience. Nontechnical people who deal
with developers on a regular basis almost universally hold the opinion that we are prima donnas at best and
crybabies at worst. Don’t reinforce this stereotype with anger and impatience.

The only constant in the world is change. Be open to it and accept it with a smile. Look at each change to
your requirements, platform, or tool as a new challenge, not as some serious inconvenience to be fought.

The only true authority stems from knowledge, not from position. Knowledge engenders authority, and
authority engenders respect — so if you want respect in an egoless environment, cultivate knowledge.

. Fight for what you believe, but gracefully accept defeat. Understand that sometimes your ideas will be

overruled. Even if you do turn out to be right, don’t take revenge or say, “I told you so” more than a few times
at most, and don’t make your dearly departed idea a martyr or rallying cry.

58

Chapter 9. Community

https://www.python.org/psf/codeofconduct/
http://en.wikipedia.org/wiki/Special:BookSources/0-932633-42-0

invenio Documentation, Release 3.0.0

9. Don’t be “the guy in the room”. Don’t be the guy coding in the dark office emerging only to buy cola. The
guy in the room is out of touch, out of sight, and out of control and has no place in an open, collaborative
environment.

10. Critique code instead of people — be kind to the coder, not to the code. As much as possible, make all of your
comments positive and oriented to improving the code. Relate comments to local standards, program specs,
increased performance, etc.

9.10 License

MIT License
Copyright (C) 2015-2018 CERN.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Note: In applying this license, CERN does not waive the privileges and immunities granted to it by virtue of its status
as an Intergovernmental Organization or submit itself to any jurisdiction.

9.10. License 59

	Quickstart
	Prerequisites
	Overview
	Bootstrap
	Customize
	Run
	Next steps

	Tutorial: Develop a module
	Scaffold new module
	Install, run and test
	Form, views and templates
	Publish on GitHub
	Continue integration with TravisCI

	Invenio module layout
	Description of the files
	Module naming conventions

	Application architecture
	Core concepts
	Interfaces: WSGI, CLI and Celery
	Application assembly
	Assembly phases
	Module discovery
	WSGI: UI and REST
	Implementation

	Migrating to v3
	Dumping data from v1.2
	Loading data in v3

	Login with ORCID
	ORCID API credentials
	Configuring Invenio

	History
	From software to framework
	What happened to Invenio v2?

	Releases
	Version 3.0.0
	Version 2.x
	Version 1.x
	Version 0.x

	Community
	Getting help
	Communication channels
	Contribution guide
	Style guide
	Developer environment guide
	Translation guide
	Maintainer’s guide
	Governance
	Code of Conduct
	License

